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Introduction
• Historically, HEP has depended on advances in accelerator 
design to make scientific progress
— cyclotron → synchrocyclotron → synchrotron → collider (circular, linear)

• Advances in accelerator design and performance require 
corresponding advances in accelerator technology
— magnets, vacuum systems, RF systems, diagnostics, ...

• Accelerators enable the study of particle physics 
phenomena under (more or less) controlled conditions

• Cost of today’s accelerator projects is high
— international cooperation and collaboration are no longer optional
— there is a danger of “pricing ourselves out of the market”
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Accelerator Deliverables
• Particle accelerators are designed to deliver two 
parameters to the HEP user
— energy and luminosity

• Energy is by far the easier parameter to deliver
— and is easier to accommodate by the experimenters

o higher luminosity invariably presents challenges to the detector
– ...and to the accelerator physicist!

• Luminosity is a measure of collision rate per unit area
— event rate for a given event probability (“cross section”) is given by

• For a collider with equal beam sizes at the IP, luminosity 
is given by

σσπ **4 yx

fNN c−+ ⇒ Need intense beams and 
small beam sizes at IP
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Particle Physics Questions (1)
• There are two primary accelerator-related thrusts

— understanding the origins of mass
o what gives particles such different masses?

– top quark has mass comparable to Au nucleus
– neutrino mass is likely a fraction of an eV
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Particle Physics Questions (2)
— understanding why we live in a matter-dominated universe

o why are we here?

• After Big Bang, equal amounts of matter and antimatter 
created
— why didn’t it all annihilate?

o believed to be due to slight differences in reaction rates between 
particles and antiparticles
– charge-conjugation–parity (CP) violation

• CP violation observed experimentally in “quark sector”
— B factories were built to study this

o unfortunately, CP violation in quark sector not large enough to explain 
observed baryon asymmetry

— prevalent view is that required additional CP violation occurs in lepton 
sector

o never observed; neutrinos are the hunting ground
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Today’s Machines
• High energy physics typically uses colliders (counter-
propagating beams that collide at one or more interaction 
points “IPs”)
— until recently, colliders were single-ring machines that required beams of 

particles and antiparticles, e.g., e– and e+

o to get higher intensities and more bunches, modern colliders use two 
rings and thus no longer require two beams that have opposite sign

• Colliders typically store one of two types of particles
— hadrons (protons, heavier ions)

o Tevatron        , RHIC (nuclear physics), LHC (p-p)
— leptons (electrons)

o CESR-c, PEP-II, KEKB

( )p-p

σσπ **4 yx

fNN c−+
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Today’s Machine Limitations (1)
• Hadron colliders

— protons are composite particles
o only ≈10% of the beam energy is available for the hard collisions that 
make new particles
– need O(10 TeV) collider to probe the 1 TeV mass scale

o desired high beam energy requires very strong magnets to store and 
focus beam in a reasonable-sized ring

— antiprotons difficult to make
o takes hours to replace them if beam is lost

— using p-p collisions bypasses the second issue, but not the first
o the demand for ever-higher luminosity has led the LHC to choose

– p-p collisions
– many bunches
– two separate rings that intersect at select locations
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Today’s Machine Limitations (2)
• Lepton colliders (e–e+)

— synchrotron radiation is the biggest challenge
— emitted power in circular machine is

o for a 1 TeV c.m. collider in the LHC tunnel (C = 27 km) with a 1 mA 
beam, radiated power would be 2 GW
– would need to provide this power with RF
– and remove it from the vacuum chamber! 

• Approach for high energies is linear collider (ILC, CLIC)
— footprint is large: 31 km in length (ILC); 48 km in length (CLIC)

o too big to fit on-site at existing lab
— single-pass acceleration is inefficient (no reuse of hardware)
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Luminosity Performance
• e+e– colliders have made great strides in delivering 
luminosity in recent years

• Both KEKB and PEP-II quickly reached luminosities beyond 
1 × 1034 cm–2 s–1

New machines likely 
to be judged in 
comparison to 
these standards!
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Future Machines
• At present, there are several machines on the drawing 
board to address the high-priority physics issues
— not all of these are at the same stage of development

o ILC and CLIC are furthest along in terms of R&D activities
— most of these machines are very expensive

o it is not likely that all of these will be built

• Precision frontier
— ILC (e+e–)
— Neutrino Factory (µ+ or µ–)
— Super-B Factory (e+e–)

• Energy frontier
— CLIC (e+e–)
— Muon Collider (µ+µ–)

For reasons of personal 
taste and familiarity, I will 
tend to emphasize muon 
machines in this talk; these 
are the most novel, but not 
the most advanced, designs
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Muon Accelerator Advantages
• Muon-beam accelerators can address both of the 
outstanding accelerator-related particle physics questions
— neutrino sector

o Neutrino Factory beam properties

o decay kinematics well known
– minimal hadronic uncertainties in the spectrum and flux

o νe → νµ oscillations give easily detectable “wrong-sign” µ

— energy frontier
o point particle makes full beam energy available for particle production

– couples strongly to Higgs sector
o Muon Collider has almost no synchrotron radiation

– narrow energy spread
– fits on existing Lab sites

ννννµ µµ
%50%50 +⇒→ ++

eee
ννννµ µµ

%50%50 +⇒→ −−

eee
Produces high 
energy neutrinos
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Muon Collider at Fermilab
• Schematic of Muon Collider on Fermilab site

— it fits comfortably
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Muon Beam Challenges
• Muons created as tertiary beam (p → π → µ)

— low production rate
o need target that can tolerate multi-MW beam

— large energy spread and transverse phase space
o need solenoidal focusing for the low energy portions of the facility

– solenoids focus in both planes simultaneously
o need emittance cooling
o high-acceptance acceleration system and decay ring

• Muons have short lifetime (2.2 µs at rest)
— puts premium on rapid beam manipulations

o presently untested ionization cooling technique
– high-gradient RF cavities (in magnetic field)

o fast acceleration system

• Decay electrons give backgrounds in collider detector and 
instrumentation, and heat load to magnets (NF and MC)

If intense muon 
beams were easy 
to produce, we’d 
already have 
them!
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Ionization Cooling (1)
• Ionization cooling analogous to familiar SR damping 
process in electron storage rings
— energy loss (SR or dE/ds) reduces px, py, pz
— energy gain (RF cavities) restores only pz
— repeating this reduces px,y/pz (⇒ 4D cooling)

— presence of LH2 near RF cavities is an engineering challenge
o we get lots of “design help” from Lab safety committees!
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Ionization Cooling (2)
• There is also a heating term

— for SR it is quantum excitation
— for ionization cooling it is multiple scattering

• Balance between heating and cooling gives equilibrium 
emittance

— prefer low β⊥ (strong focusing), large X0 and dE/ds (H2 is best)
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ILC
• ILC is aimed initially at 0.5 TeV energy scale

— two linacs + central damping ring complex
o damping rings produce 2 pm-rad vertical emittance

— technical challenges: low emittance, SRF gradient (31.5 MV/m)

31 km
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Neutrino Factory
• Neutrino Factory comprises these sections

— Proton Driver
o primary beam on production target

— Target, Capture, and Decay
o create π; decay into µ ⇒ MERIT

— Bunching and Phase Rotation
o reduce ∆E of bunch

— Cooling
o reduce transverse emittance
⇒ MICE

— Acceleration
o 130 MeV → 20-50 GeV
with RLAs or FFAGs

— Decay Ring
o store for 500 turns;
long straight(s)

ISS Baseline

Aim for 1021 νe per year 
aimed toward detector(s)
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Super-B Factory
• Goal: run at Υ(4S) with luminosity of ~1 × 1036 cm–2 s–1

• Use low-emittance rings with “crab waist” scheme to 
reduce effective beam size at IP
— IR sextupoles suppress harmful synchrobetatron resonances

Rings patterned after ILC 
DR design; would reuse 
many PEP-II components

Frascati-SLAC design effort
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CLIC Layout
• CLIC is designed for a 3 TeV collision energy

— has comparable E reach to LHC
o uses “drive beam” for RF power generation
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CLIC Features
• Novel two-beam acceleration concept

— efficient, reliable, cost-effective
o no active elements in main tunnel

— modular; easily upgradeable to higher energies
— high gradients (>100 MV/m)
— “compact” for 3 TeV linear machine (cf. ILC)

QUAD

QUAD

POWER EXTRACTION
STRUCTURE

BPM

ACCELERATING
STRUCTURES

Drive beam - 95 A, 240 ns
from 2.4 GeV to 240 MeVMain beam – 1 A, 156 ns 

from 9 GeV to 1.5 TeV
100 MV/m

CLIC TUNNEL 
CROSS-SECTION

4.5 m diameter
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Muon Collider Scheme

Based on 
Project X at 
Fermilab

Fits on Fermilab site
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Phased Approach to Muon Facility
• Fermilab exploring path toward future muon beam facility

— “imperative” is to keep Fermilab (the only active U.S. HEP lab) 
scientifically productive in the era when Tevatron has been shut down

o expected in approx. 2010

Project X is the key!

It also develops U.S. 
capabilities toward ILC
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6D Cooling
• For 6D cooling, add emittance exchange to the mix

— increase energy loss for high-energy compared with low-energy muons
o put wedge-shaped absorber in dispersive region
o use extra path length in continuous absorber

Cooling ring “Guggenheim” channel

Gas-filled helical channel

Issue: how to realistically 
incorporate RF into design
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R&D Activities
• Putative projects covered here are embarked on R&D to:

— prove physics concepts
— validate technology choices
— develop realistic, defensible cost estimates

• There are several “audiences” for the R&D results
— the project advocates
— the scientific community
— ≥1 Laboratory directors
— ≥1 funding agencies/governments

• Intensity and emittance will place high demands on 
instrumentation

• While I cannot do justice to the complete R&D programs, 
I will attempt to give a flavor of what is under way
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ILC R&D Program (1)
• Primary effort for ILC is reaching design gradient with 
production cryomodules

Cryomodule 
tests at DESY

Making progress; 
not there yet
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ILC R&D Program (2)
• Another big technical concern is e-cloud effect in PDR

— issue is degradation of vertical emittance due to interaction with e-cloud

• Initially addressed by simulations and tests of modified 
vacuum chamber designs at PEP-II
— testing “grooved” chambers and clearing electrodes

o simulations indicate beneficial effects will keep DR parameters below 
instability threshold

Grooved chamber Clearing electrode chamber
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CLIC R&D Program (1)
• Primary effort for CLIC is to demonstrate feasibility of 
CLIC technology (CTF3)
— and estimate its cost
— 19 countries currently involved in CLIC effort (centered at CERN)

o coordination with ILC on issues of common interest, e.g., DRs
INJECTOR
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CLIC R&D Program (2)
• High gradients with “hard” materials demonstrated in 
CTF2
— both Mo and W irises look workable (up to 190 MV/m!)

o issue is breakdown rate, which is not yet acceptable for operation
– breakdown criterion shows little frequency dependence
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Super B Factory R&D
• Primary issues

— does crab waist scheme work as expected?
— can the IP beta value be low enough to get a x100 luminosity increase?

• Test of crab waist scheme at DAΦNE getting under way
— modified IR to give crossing angle

o sextupoles added to IR
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Muon Beam R&D Program
• Broad R&D program under way in all regions

— Europe: various institutions sponsored by BENE and UKNF
— Japan: NuFact-J group supported by university and some US-Japan funds
— US: NFMCC program sponsored primarily by DOE with help from NSF

• Includes several international efforts already
— MERIT (target test)
— MICE (ionization cooling test)
— EMMA (electron model of non-scaling FFAG)
— IDS-NF (Neutrino Factory design study)

• Other experiments in planning stage
— MANX (6D cooling)
— Target test facility at CERN Note: R&D effort relevant 

both to NF and MC
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Cooling Channel RF
• Cooling channel requires high-gradient 201 MHz RF in a 
strong (solenoidal) magnetic field
— prototype cavity built by LBNL-Jlab collaboration (Li, Rimmer, Virostek)

o easily reached 19 MV/m design gradient without magnetic field at MTA
o waiting for a Coupling Coil to test in high magnetic field

• 805 MHz experiments indicate substantial degradation of 
gradient in such conditions
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MERIT

15-T solenoid and Hg jet installed 
in TT2A tunnel at CERN

• MERIT experiment tested Hg jet in 15-T solenoid (Kirk, 
McDonald, Efthymiopoulos)
— 24 GeV proton beam from CERN PS

o completed October 2007
Pbeam beyond 4 MW is feasible
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MICE

Challenges:
RF in magnetic field
Proximity of RF and LH2

Simple concept... 
complicated implementation
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Summary
• Facilities now in the planning stage offer great potential 
to address the key outstanding questions in HEP
— origins of mass
— origin of matter-dominated universe

• R&D toward design of these new HEP facilities progressing 
on many fronts
— from U.S. perspective, Project X is key to maintaining future options

• As with all accelerator R&D, success depends on synergy 
between accelerator physics and accelerator technology
— in particular, control of instabilities and emittance will require state-of 

the-art diagnostics (to ensure “blame” goes to the right group ☺)

• The skills of the instrumentation builders will be critical in 
turning accelerator physicists’ dreams into the cutting-
edge scientific tools of the future
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Final Thought
• Challenges of a future accelerator complex go well beyond 
those of today’s beams
— developing solutions requires substantial R&D effort to specify

o expected performance, technical feasibility/risk, cost (matters!)
 

Critical to do experiments 
and build components. 
Paper studies are not 
enough!


